Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5620, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699868

RESUMO

Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.


Assuntos
Borboletas , Animais , Tamanho do Genoma , Borboletas/genética , Genômica , Fenótipo , Filogenia
2.
Ecol Evol ; 11(19): 13029-13035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646450

RESUMO

Inferring the selective forces that orthologous genes underwent across different lineages can help us understand the evolutionary processes that have shaped their extant diversity and the phenotypes they underlie. The most widespread metric to estimate the selection regimes of coding genes-across sites and phylogenies-is the ratio of nonsynonymous to synonymous substitutions (dN/dS, also known as ω). Nowadays, modern sequencing technologies and the large amount of already available sequence data allow the retrieval of thousands of orthologous genes across large numbers of species. Nonetheless, the tools available to explore selection regimes are not designed to automatically process all genes, and their practical usage is often restricted to the single-copy ones which are found across all species considered (i.e., ubiquitous genes). This approach limits the scale of the analysis to a fraction of single-copy genes, which can be as low as an order of magnitude in respect to those which are not consistently found in all species considered (i.e., nonubiquitous genes). Here, we present a workflow named BASE that-leveraging the CodeML framework-eases the inference and interpretation of gene selection regimes in the context of comparative genomics. Although a number of bioinformatics tools have already been developed to facilitate this kind of analyses, BASE is the first to be specifically designed to allow the integration of nonubiquitous genes in a straightforward and reproducible manner. The workflow-along with all relevant documentation-is available at github.com/for-giobbe/BASE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...